Drone_with_Butterfleye_LS_hyperspectral_images_node2

One plant at a time

Precision farming is set to become even more precise with a new camera drawing on satellite imaging.

Thanks to research with ESA on new cameras, hyperspectral cameras flying on drones are now able to see details as small as 4–5 cm.

Three customers are already using the first version of the ButterflEYE LS camera: in Denmark for biological diversity studies, in Australia for agricultural research, and in Italy for providing commercial data to farmers.

The experiences will be fed back into the final commercial version.

“Our first customers were really keen on getting the high resolution, which is the best you can currently get from a hyperspectral product,” notes René Michels, CEO of Germany’s airborne specialist Cubert, who collaborated with Belgium’s VITO Remote Sensing and imec for the camera development.

The camera exploits the potential of a novel hyperspectral imaging chip from imec by combining it with VITO’s image processing honed by working with ESA on remote sensing satellites.

Weighing just 400g, the powerful camera fits easily on a small unmanned aircraft to deliver detailed measurements for precision agriculture but it has also potential in forestry, biomass monitoring, waste and pollution management.

Harnessing the power of colour

“Hyperspectral imaging captures many very narrow wavelength bands in the visible and near-infrared instead of the more typical three or four broad spectral bands: red, green, blue and, sometimes, infrared.”

“By imaging the world in more colours, you can detect certain phenomena faster and more exactly,” explains Bavo Delauré from VITO Remote Sensing.

“A camera that is more sensitive to subtle differences in colour allows you to identify problems that you can’t see with your naked eye or a normal camera until it’s too late to do anything about it.”

Historically, a prism has been used to separate the colours but this results in complex optics and larger cameras. Following VITO’s work on the Proba-V satellite, ESA’s Luca Maresi set the company a challenge of producing a lightweight hyperspectral camera based on a different technology.

The initial approach uses a variable filter in front of the detector, creating an instrument as compact as a standard colour camera and therefore suitable for use on small satellites and drones. One is used by Dutch Cosine Research in their HyperScout camera for the GomX-4B CubeSat, to be launched this year.

Space spin-off helps on Earth

To make the camera even more versatile and suitable for mass production, imec created an ultra-small sensor with the hyperspectral filter incorporated. Cubert used this filter-in-chip sensor in their new ButterflEYE LS camera.

Source: http://www.esa.int/Our_Activities/Space_Engineering_Technology/TTP2/One_plant_at_a_time

Do you have an innovative project with a focus on technology transfer between Agri-Food and ICT, Health or AeroSpace sectors?

ACTTiVAte offers direct funding and business support services to innovative SME projects. Open call for proposals. Apply now!